
 1

Ada User Journal V olume 26, Number 3, September 2005

Ada Bug Finder
Alan Marriott and Urs Maurer
White Elephant GmbH, Postfach 327, CH-8450 Andelfingen, Switzerland; email: ada@white-elephant.ch

Abstract
In the context of this paper , we consider bug patterns
to be sections of code that whilst syntactically correct
are unlikely to be what the author intended.

Everyone, even the most erudite programmers, make
dumb mistakes, often as a result of a particularly
inept piece of cut and paste editing or sometimes
simply by typing the exact opposite of what was
meant.

Our experience has shown that even the most
blatantly incorrect code can make its way into
production code!

In many situations compilers could have detected the
bug patterns. However it seems that the current
generation of Ada compilers is content if the
programmer writes legal Ada syntax. Determining
whether this code is meaningful or not seems to
beyond their remit.

As a consequence we have written a bug finder tool
which, using static code analysis, attempts to detect
code that is either obviously incorrect, is in some way
questionable or is so badly written that the tool itself
cannot make sense of it and is therefore worthy of
further analysis.

This paper describes the tool, the bug patterns it
employs and an evaluation of the results of applying
the tool over several large Ada code bases.

Keywords: utility, bug finder , Ada.

1 Introduction
In the autumn of 2004, we were fortunate to attend the
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) 2004 conference in Vancouver,
BC, Canada. As part of the OOPSLA Onward! Track,
David Hovemeyer and William Pugh presented their paper
entitled “Finding Bugs is Easy [1]”

Their paper and the presentation they made at the
conference have been the basis and inspiration for the work
described in this paper. Hovemeyer & Pugh’s work
concentrated exclusively on Java. We merely extended and
adapted the idea for Ada.

Their basic premise is that many simple and obvious bugs
slip through testing and end up in production code and that
with a little bit of effort these bugs can be automatically
found.

It is their belief that bugs in production code are not
normally found because either the user does not notice the
symptom of the bug, has no means to report the bug to the
developers or cannot reproduce the situation that caused the
bug.

Their idea is that if you detected a bug in some code you
are working on, you should examine how one could look
for other occurrences of the same bug and then try to
determine whether this search could be somehow
automated.

If a pattern can be established by which the bug can be
automatically discovered then this mechanism should be
incorporated into some form of tool and the tool used to
search actively for the bug in as much source code as
possible.

This is to say not just in the current module or project, but
also in other projects, libraries and as much open source
that is available.

Because their paper concentrated on Java and Java specific
problems most of the bug patterns described by Hovemeyer
and Pugh were not applicable. Therefore part of our work
has been to develop bug patterns that are specific to Ada.

2 The Ada Bug Finder Utility
Our Ada Bug Finder tool is an interactive Windows® based
program written exclusively in Ada95.

Although not open source, the executable is available for
download from our web site www.white-elephant.ch. We
would like actively to encourage everyone to try it out on
all available Ada source code and to report back to us with
statistics regarding how many bugs the tool found and how
many of these were serious.

We would also be interested in any feedback concerning
how the utility might be enhanced either by suggesting new
bug patterns or citing occasions where an unnecessarily
large number of false positives were incurred.

2.1 Overview
The Ada Bug Finder utility takes the name of a directory as
its only input. When commanded the utility searches all the
Ada files contained in the specified directory and all its
subdirectories.

Ada package specifications and implementations are
assumed to be in pairs of files, either

• Both files have the same filename but different file
extensions. The package specification having the file

mailto:ada@white-elephant.ch
http://www.white-elephant.ch

2

V olume 22, Number 1, M arch 2001 Ada User Journal

extension ads and the implementation the extension
adb

For example: Test.ads and Test.adb

• Both files have the file extension ada and share the
same filename up until the final character. An
additional underscore signifies that the file contains
the package specification.

For example: Test_.ada and Test.ada

The program supports two options.

• Gnat extensions

If enabled instructs the syntax parser to accept the
Gnat implementation defined attributes.

• Preparation phase.

If enabled causes the utility to process the files twice.
The first pass gathers additional information that can
be used to reduce the number of false positives at the
expense of speed.

Results of the search are displayed in a tree view. These
may be saved as either text or as a comma delimited file
suitable for further processing by utilities such as Microsoft
Excel.

2.2 Bugs vs. Style
Hovemeyer and Pugh consider the primary purpose of style
rules is to make it easier for developers to understand each
other’s code and consequently they should not be included
in a bug-finding tool.

Whilst we agree that this is true with respect to many style
rules, we believe that some style rules have been introduced
with the specific intention of prohibiting language features
that are considered to encourage unsafe programming

practices. Other style rules have been introduced to
facilitate easier debugging.

In both these cases the enforcement of style rules could
directly affect the software reliability. For this reason our
utility also offers the optional detection of various style rule
violations.

2.3 False Positives
Unfortunately, the utility doesn’t always get it right!
Occasionally the utility will highlight a segment of code as
being a bug when, in fact, it is perfectly correct.

A goal of the utility is to reduce the number of these false
positives to a minimum without making the pattern
unnecessarily complex and unduly expensive to implement.
There is a trade off, therefore, between complexity and the
number of false positives the pattern might generate.

Within reason, we would rather have a few false positives
than the utility missing an actual bug or making the pattern
so complex that it becomes no longer reasonable to
implement.

2.4 Code Marking
Given that there will be the occasional false positive, we
decided that there should be a mechanism whereby the
utility could be instructed to ignore a specific pattern on a
particular line.

The mechanism we chose is to place a special comment at
the end of the line on which the utility detects the bug. The
special comment starts with a greater than symbol (>)
followed by a two or three character bug abbreviation code
terminated by a colon.

Example:

C_False : constant Integer := 0; --> UD: Completeness

Figure 1 Screenshot of the Ada Bug Finder

 3

Ada User Journal V olume 26, Number 3, September 2005

In the above example the line is flagged against unused
declarations (UD). The Ada Bug Finder utility will not
report any unused declarations declared on this line.

3 Ada Bug Patterns
Version 1.3 of the Ada Bug Finder utility recognises eight
Ada bug patterns.

3.1 Illogical Operator Rename (IOR)
In Ada83, where there is no use type clause, operators are
often renamed to avoid the use of prefixed notation in
environments where the use clause is expressly forbidden.

Clumsy cut and paste editing might result in renaming an
operator to be something totally different. The compiler
allows this, although it is highly unlikely to be what the
author intended.

Example:

function "<"(Left, Right : Xt.Widget)
 return Boolean renames Xt."=";

3.2 Code Not Reachable (CNR)
Statements after an unconditional raise, return or exit will
never be executed.

Note: The Gnat compiler 3.15p checks for this pattern
however both the Aonix and HP compilers do not.

Example:

procedure Cnr is
begin
 loop
 exit;
 Io.Put_Line ("Never written!");
 end loop;
 return;
 Io.Put_Line ("Will never get written!");
end Cnr;

3.3 Null Pointer (NP)
This pattern looks for occasions of a pointer being
dereferenced whilst it is known to be null. Typically, this
occurs in the body of an if statement that has previously
tested the pointer explicitly for null.

Example:

if The_String = null then
 Io.Put_Line (The_String.all);
end if;

3.4 Non Short Circuit (NSC)
Essentially, testing for a condition and then, in the same
expression, using the result of that condition normally
requires that the programmer use the "and then" or the "or
else" construct rather than simply "and" or "or".

Example:

Result := (The_String = null) or
 (The_String.all = "Hello");

Result := (Index <= Numbers’last) and
 (Numbers (Index) = 42);

3.5 Wrong Granularity (WG)
Ada’s 'Size attribute returns the size of the object in bits
whereas storage allocation and most interfaces expect
object sizes to be supplied in bytes.

Consequently it is very unusual for 'Size to be used outside
of an expression. These occurrences are likely to be bugs
and therefore warrant further scrutiny.

Example:

Read (Buffer => Buffer'address
 Max_Size => Buffer'size
 Amount_Read => The_Size);

3.6 Unused Declarations
If something is declared but never used, it might simply be
because it is not required. Its presence might cause the
compiler more work, it might make the program bigger and
it might possibly make the code less understandable.

Whilst all these symptoms are undoubtedly undesirable
they are not actually bugs.

However another reason that a declared object may never
be referenced is because something else is being referenced
in place of it. These occurrences are bugs and it the aim of
the next three patterns is to identify them.

3.6.1 Unused Declaration (UD)
A constant or variable is declared but never used. Note,
however, that this might be deliberate. The initialization of
controlled objects or the default initialization may have an
effect that is actually required.

3.6.2 Exception Not Raised (ENR)
An exception is declared, perhaps even handled, but is
never raised.

3.6.3 Unused Unit (UU)
A package is imported but never used, or a procedure,
function or package is defined but neither exported nor
used locally.

3.7 Syntax Error (SE)
This isn't really a bug pattern per se. Unfortunately, some
of the code placed in open source libraries doesn't actually
compile! Our utility reports syntax error if the code it is
analysing appears to be invalid Ada.

4 Style Rule Checking
Our utility optionally checks six style rules. Each style rule
can be individually enabled or disabled.

The paragraph references within parentheses refer to the
Ada 95 Quality and Style Guide [2].

4

V olume 22, Number 1, M arch 2001 Ada User Journal

4.1 HTE - Handle Task Exceptions (6.3.4)
A task will terminate if an exception is raised within it, for
which there is no exception handler. In such cases, the
exception is not propagated outside of the task (unless it
occurs during a rendezvous). The task simply dies with no
notification to other tasks in the program. This makes
debugging these tasks especially difficult and so we have
implemented a style rule that checks that every task has an
exception handler at its outermost level that includes a
when others statement.

4.2 NDO - No Declaration Overloading
Prohibits declarations that have the same name as a
declaration currently in scope. We believe that it is poor
programming style to occlude a declaration deliberately.

4.3 NGS - No Goto Statements (5.6.7)
Prohibits the use of the goto statement as this is considered
an unstructured change in the control flow. In Ada, the
label does not require an indicator of where the
corresponding goto statements are. Many believe that this
renders the code unreadable.

4.4 NPUC - No Package Use Clause (5.7.1)
Prohibits the use of the use clause and thereby forces
external names to be always fully qualified. To provide
visibility to operators use the use type clause.

4.5 NVIS - No Variable in Specification
Prohibits the declaration of variables in package
specifications.

4.6 CNP – Code Not Portable
In Ada83 identifiers may only contain ASCII alphanumeric
characters. However some compilers fail to enforce this
restriction. Although Ada-95 allows identifiers to be
constructed from any alphanumeric from row 00 of the ISO
10646 BMP, effectively ISO 8859-1 (Latin-1), using
characters outside of the ASCII character range may lead to
portability problems.

4.7 Superfluous Code Mark
If an Ada Bug Finder code mark (>xx:) is used to suppress
the reporting of a particular bug but the line in question
doesn't actually produce the bug in question then something
is probably wrong. It is bad style to suppress warnings
unnecessarily.

5 Other Patterns (to be implemented)
5.1 Division by Zero
This pattern looks for the situation when an identifier is
explicitly compared with zero and then used as the right
operand of one of the operators /, rem and mod

Example:

if Index = 0 then
 Result := (42 / Index) > 10;
end if;

5.2 Raise after Assignment
Leaving a procedure abnormally nullifies any assignment
to in-out or out parameters.

Example:

procedure Raa (The_Number : in out Natural) is
begin
 The_Number := The_Number + 1;
 raise Failed;
end Raa;

5.3 Redundant Comparison to null
If a null pointer check is made after code has already
dereferenced the pointer, the comparison is redundant.

Either the comparison is made too late or is superfluous
because the condition is known never to arise.

Example:

procedure Rcn is
begin
 Ada.Text_Io.Put_Line (The_String.all);
 if The_String /= null then
 Ada.Text_Io.Put_Line (The_String.all);
 end if;
end Rcn;

5.4 Symmetrical Comparison
If the left and right sides of a comparison are identical then
this is probably a cut and paste error as it obviously makes
no sense!

Example:

if Table (Index) = Table (Index) then

 5

Ada User Journal V olume 26, Number 3, September 2005

6 Evaluation
It was relatively easy to use our utility to search for bugs in
the Ada source code we had available, however, evaluating
the results is a time-consuming and subjective process.

Figures 2 and 3 summarise the results of our using the Ada
Bug Finder version 1.4 on the following applications and
libraries

• Soudronic AG, UniControl release 1.3

• Siemens AG, ILTIS PC release 3622_12_36

• Source code provided with the Aonix compiler
version 7.2.2

• Gnat open source for GCC version 3.15p, Gps 1.4 and
Xml

• Charles library & AI- 302

In Figure 2, the number of files that the utility analysed is
provided in order to give some sort of idea as to the their
relative sizes.

Unfortunately we have had neither the time nor the
resources to make anything other than a cursory evaluation
of the results.

However, we have been able to make the following
observations:

1. The ILTIS application was the only Ada83 code we
analysed. This explains why it alone contained
illogical operator renaming bugs.

2. We believe that the low number of CNR bugs within
the Gnat code base can be attributed to it normally
being compiled using the Gnat Ada Compiler which
itself issues this type of warning.

3. The vast majority of reported bugs were harmless
unused declarations of some sort. However, we believe
that removing this clutter generally improved the
readability of the code.

7 Conclusions
The utility has been instrumental in discovering several
bugs that had made their way into production code.

Some of these bugs were so obscure that they would
probably be very difficult to discover using traditional
methods.

Sources Files CNR ENR IOR NSC NP SE UD UU WG Style
UniControl 1.3 149 15 2 36 25 1 25
ILTIS 3622_12_36 4539 25 267 2 131 11 1672 317 23 2109
Aonix 7.2.2 828 2 18 4 196 23 5 1080
GCC 3.15p, Gps1.4 2976 1 55 4 1 8 255 236 3 14070
AI-302 147 1 1 1 240

Figure 2 – Bug Warnings

Sources Total CNP HTE NDO NGS NPUC NVIS SCM
UniControl 1.3 25 9 16
ILTIS 3622_12_36 2109 24 22 1443 169 451
Aonix 7.2.2 1080 16 20 2 475 567
Gnat GCC 3.15p, Gps1.4 14070 17 314 462 11303 1974
AI-302 240 2 3 233 2

Figure 3 - Style Rule Violations

Code Description
CNR Code Not Reachable
ENR Exception Not Raised
IOR Illogical Operator Rename
NSC Non Short Circuit
NP Null Pointer
SE Syntax Error
UD Unused Declaration
UU Unused Unit
WG Wrong Granularity
Style Style Rule Violation

Figure 4 - Bug Pattern Codes

Code Description
CNP Code Not Portable
HTE Handle Task Exceptions
NDO No Declaration Overloading
NGS No Goto Statements
NPUC No Package Use Clause
NVIS No Variable In Specification
SCM Superfluous Code Mark

Figure 5 - Style Rule Codes

6

V olume 22, Number 1, M arch 2001 Ada User Journal

For example, the UniControl Wrong Granularity (WG) bug
informed an API that a buffer was larger than it really was.
The consequence of this was that occasionally, depending
on what the function wanted to return, code would get
overwritten and the application would crash.

Although written to search for bugs in existing code bases,
we have discovered that the utility is also a useful
development tool. Occasionally running the Bug Finder
over newly developed code before it has been released or
submitted into a library has detected several bugs that
probably would have only been detected during testing.

8 An alternative method
From start to finish, the Ada Bug Finder project, including
testing and presentation, took 140 Man-hours of effort.

We were able to develop the utility within these constraints
by reusing an Ada text parser that we had developed for a
previous project.

However using static code analysis has severe limitations.
The utility simply does not know enough about the

semantics of the code it is analysing for it to detect some of
the bug patterns we had hoped to implement.

An alternative method could be to use the ASIS compiler
interface [3]. This is an open, published callable interface
that gives access to semantic and syntactic information
from an Ada environment.

Acknowledgments
Siemens Schweiz AG sponsored the development of the
Ada Bug Finder

References
[1] David Hovemeyer and William Pugh, Finding Bugs Is

Easy. Department of Computer Science, University of
Maryland, College Park, Maryland 20742 USA
{daveho, pugh}@cs.umd.edu

[2] Ausnit-Hood, Johnson, Pettit & Opdahl, Ada 95
Quality and Style. LNCS 1344, Springer-Verlag

[3] Ada Semantic Interface Specification (ASIS)
JTC1/SC22 ISO Standard ISO/IEC 15291:1999

mailto:@cs.umd.edu

